Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clinical epidemiology and global health ; 2023.
Article in English | EuropePMC | ID: covidwho-2304519

ABSTRACT

Background The COVID-19 pandemic changed the typical patterns of respiratory infections globally. While SARS-CoV-2 illness exhibited explosive growth since 2020, the activity of other respiratory viruses fell below historical seasonal norms. The objective of this study was to assess the prevalence of seasonal respiratory viruses during the COVID-19 pandemic in Tunisia. Methods This is a retrospective cross-sectional study including 284 nasopharyngeal samples tested negative for SARS-CoV-2 during the period October 2020–May 2021. All samples were screened for fifteen common respiratory viruses. Either a fast syndromic approach using Biofire FILM ARRAY respiratory 2.1 (RP2.1) Panel, or end-point multiplex RT-PCRs detecting RNA viruses and Real-Time PCR detecting Adenoviruses were used. Results Overall, 30.6% (87/284) of samples were positive for at least one virus. Mixed infections were detected in 3.4% of positive cases. Enterovirus/Rhinovirus (HEV/HRV) was the most detected virus throughout the study period, especially during December 2020 (33.3% of all HEV/HRV being detected). During the 2020–2021 winter season, neither Respiratory Syncytial Virus nor Influenza Viruses circulation was observed. Metapneumovirus and Parainfluenza Viruses infections were detected during the spring season. The highest rate of respiratory viruses detection was observed in children and adults aged [0–10] years (50%) and [31–40] years (40%). HEV/HRV was the most detected virus regardless of age group. Conclusions Public health measures used to prevent SARS-CoV-2 spread in Tunisia were also effective to reduce transmission of the other respiratory viruses, especially Influenza. The higher resistance of HEV/HRV in the environment could explain their predominance and continuous circulation during this period.

2.
J Virol Methods ; 307: 114570, 2022 09.
Article in English | MEDLINE | ID: covidwho-1895295

ABSTRACT

The high need of rapid and flexible tools that facilitate the identification of circulating SARS-CoV-2 Variants of Concern (VOCs) remains crucial for public health system monitoring. Here, we develop allele-specific (AS)-qPCR assays targeting three recurrent indel mutations, ΔEF156-157, Ins214EPE and ΔLPP24-26, in spike (S) gene to identify the Delta VOC and the Omicron sublineages BA.1 and BA.2, respectively. After verification of the analytical specificity of each primer set, two duplex qPCR assays with melting curve analysis were performed to screen 129 COVID-19 cases confirmed between December 31, 2021 and February 01, 2022 in Sfax, Tunisia. The first duplex assay targeting ΔEF156-157 and Ins214EPE mutations successfully detected the Delta VOC in 39 cases and Omicron BA.1 in 83 cases. All the remaining cases (n = 7) were identified as Omicron BA.2, by the second duplex assay targeting Ins214EPE and ΔLPP24-26 mutations. The results of the screening method were in perfect concordance with those of S gene partial sequencing. In conclusion, our findings provide a simple and flexible screening method for more rapid and reliable monitoring of circulating VOCs. We highly recommend its implementation to guide public health policies.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Genotype , Humans , INDEL Mutation , SARS-CoV-2/genetics
3.
Int J Infect Dis ; 117: 146-154, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1706475

ABSTRACT

OBJECTIVES: Since the onset of the COVID-19 pandemic, cases of reinfection with SARS-CoV-2 have been reported, raising additional public health concerns. SARS-CoV-2 reinfection was assessed in healthcare workers (HCWs) in Tunisia because they are at the greatest exposure to infection by different variants. METHODS: We conducted whole-genome sequencing of the viral RNA from clinical specimens collected during the initial infection and the suspected reinfection from 4 HCWs, who were working at the Habib Bourguiba University Hospital (Sfax, Tunisia) and retested positive for SARS-CoV-2 through reverse transcriptase-polymerase chain reaction (RT-PCR) after recovery from a first infection. A total of 8 viral RNAs from the patients' respiratory specimens were obtained, which allowed us to characterize the differences between viral genomes from initial infection and positive retest. The serology status for total Ig, IgG, and IgM against SARS-CoV-2 was also determined and followed after the first infection. RESULTS: We confirmed through whole-genome sequencing of the viral samples that all 4 cases experienced a reinfection event. The interval between the 2 infection events ranged between 45 and 141 days, and symptoms were milder in the second infection for 2 patients and more severe for the remaining 2 patients. Reinfection occurred in all 4 patients despite the presence of antibodies in 3 of them. CONCLUSION: This study adds to the rapidly growing evidence of COVID-19 reinfection, where viral sequences were used to confirm infection by distinct isolates of SARS-CoV-2 in HCWs. These findings suggest that individuals who are exposed to different SARS-CoV-2 variants might not acquire sufficiently protective immunity through natural infection and emphasize the necessity of their vaccination and the regular follow-up of their immune status both in quantitative and qualitative terms.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Delivery of Health Care , Health Personnel , Hospitals , Humans , Pandemics , Reinfection/epidemiology , SARS-CoV-2/genetics
4.
Science ; 374(6566): 423-431, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1483977

ABSTRACT

The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants.


Subject(s)
COVID-19/epidemiology , Epidemiological Monitoring , Genomics , Pandemics , SARS-CoV-2/genetics , Africa/epidemiology , COVID-19/transmission , COVID-19/virology , Genetic Variation , Humans , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL